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Abstract. This paper presents the DPF Workbench, a language workbench for (meta)modelling and code generation. The DPF
Workbench includes a graphical specification editor for the Diagram Predicate Framework (DPF), which provides a graph-based
formalization of (meta)modelling and model transformation. The tool offers functionality for fully diagrammatic specifications
of domain-specific modelling languages. Moreover, the DPF Workbench supports the development of metamodelling hierarchies
with an arbitrary number of metalevels; i.e. each model at a metalevel can be used as a metamodel for the metalevel below. The
DPF Workbench facilitates the generation of domain-specific diagrammatic editors out of these metamodels. The conformance
relations between adjacent metalevels are checked using typing morphisms and validation of diagrammatic constraints. In addition,
the DPF Workbench provides a signature editor for the definition of software constraints and their corresponding validators. The
code generator is a newly added component that facilitates the generation of software from models defined in the DPF Workbench.
The features of the DPF Workbench are illustrated by a running example presenting a metamodelling hierarchy for business process
modelling and sketching how these models can be transformed to programs by the code generation facility.

Key words: model-driven engineering, diagram predicate framework, language workbench, diagrammatic modelling, meta-
modelling.

1. INTRODUCTION

Model-Driven Engineering (MDE) promotes the use of
models as the primary artefacts in the software develop-
ment process. These models are used to specify, simulate,
generate code, and maintain the resulting applica-
tions. Models can be specified by general-purpose
modelling languages such as the Unified Modeling
Language (UML) [26]. To fully unfold the potential
of MDE, models are specified by Domain-Specific
Modelling Languages (DSMLs) that are tailored to
a specific domain of concern [13]. The DSMLs are
modelling languages where the language primitives con-
sist of domain concepts. It is common practice to
specify these domain concepts by a graph-based meta-
model while the constraints are specified by a text-
based language such as the Object Constraint Language
(OCL) [25]. This mixture of text-based and graph-

based languages is an obstacle for employing MDE,
especially regarding model transformation [33] and
synchronization of graphical models with their textual
constraints [30]. A more practical solution to this
problem is a fully graph-based approach to the definition
of DSMLs; i.e. diagrammatic specification of both the
metamodel and the constraints.

The availability of tools that facilitate the design
and implementation of DSMLs is another important
factor for the acceptance and adoption of MDE. DSMLs
are specified by metamodels, hence it is necessary
to be able to automatically create modelling tools
from these metamodels. To be useful, DSMLs are
required to be intuitive enough for domain experts,
while they are formal enough to enable sound
model transformations and code generation. Therefore,
we propose a formal, diagrammatic approach to
(meta)modelling and generation of DSMLs.
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Fig. 1. A simplified view of (a) the EMF metamodelling hierarchy and (b) a generic metamodelling hierarchy as implemented in
the DPF Workbench.

An industrial standard to describe DSMLs is the
Meta-Object Facility (MOF) [24] provided by the
Object Management Group (OMG). A reference imple-
mentation inspired by the MOF standard is Ecore,
which is the core language of the Eclipse Modeling
Framework (EMF) [35]. This framework uses a two-
level metamodelling approach where a model created by
the Ecore editor can be used to generate a DSL with a
corresponding editor (see Fig. 1a). This editor, in turn,
can be used to create instances; however, these instances
of the DSL cannot be used to generate other DSLs. That
is, the metamodelling process is limited to only two
metamodelling levels. Note that the EMF is a modelling
framework with code generation facilities for defining
structural data models, but the functionality for creating
diagrammatic DSMLs is not in the scope of the EMF.

The two-level metamodelling approach has several
limitations (see [1,15,28] for a comprehensive argu-
mentation). The lack of multi-level metamodelling
support forces DSML designers to introduce type–
instance relations in the metamodel. This leads to a
mixture of domain concepts with language concepts at
the same modelling level. The approach in this paper
tackles this issue by introducing a multi-level meta-
modelling tool. That is, a tool for developing metamodel-
ling hierarchies with an arbitrary number of metalevels
where each model at a metalevel can be used as a meta-
model for the metalevel below (see Fig. 1b) is introduced.

The automatic generation of software from models
is one of the fundamental ideas of MDE. It enhances
productivity, code quality, consistency, etc. [17]. By
combining code generation techniques with DSMLs, it
is possible to separate domain concerns from imple-
mentation details. Traditionally, code generation is done
for two meta-level modelling hierarchies. In this paper
we propose a code generation approach for multi-level
metamodelling hierarchies. In this way we can construct
code generators for any level of abstraction, which makes
it possible to create high-level prototypes of the system
to test design choices in an early phase of the software
development process.

Language workbench is a concept that has gained
popularity in the last years. A language workbench con-
sists of an environment for creating DSML/DSLs and
corresponding tools [13]. A workbench should provide
an IDE-like environment for creating DSML/DSLs,
and in addition, it should generate tooling support for
the specified language that facilitates code generation,
model transformation, model versioning, etc. DSMLs
are usually specified by metamodels that are defined as
instances of a general purpose modelling language.

When working with language workbenches, the
development process is divided into two phases. First,
the DSML is created along with relevant tools, such as
editors and code generators (see Fig. 2). This activity
should be performed by experienced developers or
language designers in collaboration with domain experts,
ensuring that the tooling for the language is tailored to the
user’s needs. Second, developers use the DSML and the
corresponding tools to create software for the application
domain. To enhance the communication it is important to
use a development language that is understood by both
the developers and the domain experts.

This paper presents the DPF Workbench, a
language workbench for (meta)modelling and code
generation. The DPF Workbench is an implementation
of the techniques and methodologies developed in
the Diagram Predicate Framework (DPF) [6,32,33],
which provides a formalization of (meta)modelling and
model transformations. The DPF is an extension of
the generalized sketches framework [9,10], based on
category theory [5] and graph transformations [12].
The DPF Workbench supports the development of
metamodelling hierarchies with an arbitrary number of
metalevels; that is, each model at a metalevel can be used
as a metamodel for the metalevel below. A DPF model
consists of a graph-based structure together with a set of
diagrammatic constraints. The conformance of models
to metamodels is formalized and checked in the DPF
Workbench by validating both typing and diagrammatic
constraints.
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Fig. 2. Intended use of language workbenches.

The DPF specification editor was presented for the
first time in [20]. Later, in [21], the DPF specification
editor was extended with an editor for creating dia-
grammatic signatures facilitating the definition of user-
defined predicates. In this paper we combine the func-
tionality from the specification and signature editors with
the newly added code generation functionality, which
is an important step on the way to make a complete
MDE workbench. Moreover, the comparison to related
approaches is more elaborated in this version than in
earlier works.

The remainder of the paper is organized as follows.
Section 2 introduces some basic concepts from the
DPF. Section 3 gives a brief overview of the tool
architecture. Section 4 demonstrates the metamodelling
functionality of the tool by giving an example of a
metamodelling scenario. Section 5 introduces the code
generation facilities and generates code for the example
presented in Section 4. Section 6 compares the DPF
Workbench with related tools, and Section 7 concludes
the paper and outlines future research directions and
possible extensions of the DPF Workbench.

2. DIAGRAM PREDICATE FRAMEWORK

We will now give a brief introduction to the DPF, for
details please check the papers on the foundation of the
DPF, e.g. [30,32]. In the DPF, models are represented
by (diagrammatic) specifications. A specification S =
(S,CS : Σ) consists of an underlying graph S together
with a set of atomic constraints CS . The graph repre-
sents the structure of the specification and the atomic
constraints represent the restrictions attached to this
structure. Atomic constraints are specified by predicates

from a predefined (diagrammatic predicate) signature
Σ. A signature Σ = (ΠΣ ,αΣ) consists of a collection
of predicates, each having a symbol, an arity (or shape
graph), a visualization, and a semantic interpretation (see
Table 1). A constraint is given by a predicate together
with the subgraph of the specification’s underlying graph
that is affected by the predicate.

For instance, Fig. 3 shows a specification S2 that is
compliant with the requirement “activities cannot send
messages to themselves”. In S2, this requirement is
forced by the atomic constraint ([irreflexive],δ ) on
the arrow Message. Note that δ is a graph homomorphism
δ : αΣ([irreflexive]) → S2 specifying which part of
S2 is affected by the [irreflexive] predicate.

The semantics of nodes and arrows of the underlying
graph of a specification has to be chosen in a way
that is appropriate for the corresponding modelling
environment. In object-oriented structural modelling,
each object may be related to a set of other objects.
Hence, it is appropriate to interpret nodes as sets and

arrows X
f−→ Y as multi-valued functions f : X →℘(Y ).

The powerset ℘(Y ) of Y is the set of all subsets of Y ; i.e.
℘(Y ) = {A | A ⊆ Y}. Moreover, the composition of two
multi-valued functions f : X →℘(Y ), g : Y →℘(Z) is
defined by ( f ;g)(x) :=

⋃{g(y) | y ∈ f (x)}.
The semantics of a specification is defined by the set

of its instances (I, ι). An instance (I, ι) of S = (S,CS) is
a graph I together with a graph homomorphism ι : I → S
that satisfies the atomic constraints CS . To check that
an atomic constraint is satisfied in a given instance of
S, it is enough to inspect the part of S that is affected
by the atomic constraint [30]. In this way, an instance
of the specification is inspected first to check that the
typing is correct, then to check that every constraint in
the specification is satisfied.
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Table 1. The signature Σ used in the metamodelling example

Element Flow

Activity Message

[irr]

2S

3S
Π

Σ αΣ Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1
a

X
f

[irr]

∀x ∈ X : x /∈ f(x)

Fig. 3. Specifications S2 and S3 and the signature Σ.

In the DPF, two kinds of conformance relations are
distinguished: typed by and conforms to. A specifica-
tion Si at metalevel i is said to be typed by a
specification Si+1 at metalevel i + 1 if there exists
a graph homomorphism ιi : Si → Si+1, called the
typing morphism, between the underlying graphs of the
specifications. A specification Si at metalevel i is said to
conform to a specification Si+1 at metalevel i+1 if there

exists a typing morphism ιi : Si → Si+1 such that (Si, ιi) is
an instance of Si+1; i.e. such that ιi satisfies the atomic
constraints CSi+1 .

For instance, Fig. 3 shows a specification S2 that
conforms to a specification S3. That is, there exists a
typing morphism ι2 : S2 → S3 such that (S2, ι2) is an
instance of S3. Note that since S3 does not contain
any atomic constraints, the underlying graph of S2 is an
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instance of S3 as long as there exists a typing morphism
ι2 : S2 → S3. However, Fig. 4 shows two graphs, both
typed by the specification S2, but only Fig. 4a is an
instance of S2, since the graph in Fig. 4b violates the
([irreflexive],δ ) constraint on the arrow Message.

To ensure correct typing, the DPF Workbench only
allows creation of elements that are typed by the ele-
ments in the metamodel. Hence in the example above,
when we create the nodes Activity1 and Activity2, we
use the tooling palette of the DPF Workbench to choose
that the meta-type of these two elements is the node
Activity in S2. Moreover, when we create the edge
m1 of type Message, the DPF Workbench checks if
the corresponding types of the source and the target
of m1 are correct before we are allowed to create it.
This means that the source and target of m1 must be
typed by the source and target of Message, respectively.
Thus, the DPF Workbench actually constructs a graph
homomorphism when new elements are created. This
graph homomorphism is stored with the model, which
makes later type checking a trivial task.

To ensure constraint satisfaction, for each constraint
c on a subgraph H of the metamodel, the DPF
Workbench checks if the part of the model that is
typed by H fulfills c. The actual check is done by
running a Java (or OCL) validator that checks whether
the constraint is satisfied by the part of the model that is
typed by H. In the example above, there is an irreflexivity
constraint ([irreflexive],δ ) on the meta-type Message,
and the edges m1 and m2 are typed by Message. To
check whether the constraint is satisfied by the graph in
Fig. 4a, the DPF Workbench checks whether the common
part (the pullback) of δ and ι satisfies the constraint
validator of [irreflexive], where ι is the typing graph
homomorphism that was constructed when the model
was created. The constraint validator of [irreflexive]
simply checks whether there is a loop in the graph.

In the DPF Workbench, a DSML corresponds to a
diagrammatic specification editor, which in turn consists
of a signature and a metamodel. A signature editor is
used to define new signatures, and each diagrammatic
specification editor can further be used to specify new
metamodels, and thus new DSMLs can be created (see
Fig. 1b).

Fig. 4. (a) An instance of S2 and (b) a graph that violates the
irreflexivity constraint of S2.

3. TOOL ARCHITECTURE

The DPF Workbench was developed in Java as a plug-
in for Eclipse [11]. Eclipse follows a cross-platform
architecture that is well suited for tool integration since it
implements the Open Services Gateway initiative (OSGi)
framework. Moreover, it has an ecosystem around the
basic Eclipse platform that offers a rich set of plug-ins
and APIs that are helpful when implementing modelling
tools. In addition, Eclipse technology is widely used in
practice and is also employed in commercial products
such as the Rational Software Architect (RSA) [18] as
well as in open-source products such as the modelling
tool TOPCASED [38]. As an Eclipse plug-in the
DPF Workbench can easily be integrated into and used
together with such tools.

Figure 5 illustrates that the DPF Workbench consists
of three main components, which are built on top of
three auxiliary components. The auxiliary component
“DPF Core” provides access to the core features of
the tool: these are the facilities to create, store, and
validate DPF specifications. This part uses EMF for data
storage. Thus the DPF Workbench contains an internal
metamodel that is an Ecore model. As a consequence,
each DPF specification is also an instance of this internal
metamodel. EMF was chosen for data storage because
it is a de facto standard in the modelling field and
guarantees high interoperability with various other tools
and frameworks. Therefore, DPF models can be used
with e.g. code generation frameworks such as those
offered by the Eclipse Model To Text (M2T) project.
The component “DPF Core” is extended by the auxiliary
component “DPF Diagram”, which also contains an
EMF metamodel that stores additional information that
is used to visualize models. Such models store e.g. the
position of elements and information concerning their
visualization. The component “DPF Diagram” depends
on the Graphical Editing Framework (GEF) [16]. The
GEF provides functionalities to create rich graphical

Eclipse Platform

GEF EMF Xpand

DPF Core
DPF Xpand

metamodel 
DPF Diagram

DPF Code 

Generator 

DPF Workbench

DPF Model

Editor 

DPF Signature

Editor 

Fig. 5. The main component architecture of the DPF Workbench
plug-in packages.
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editors and views for the Eclipse platform following a
Model–View–Controller (MVC) architecture. The last
auxiliary component implements an extension to the
Xpand generator (see Section 5).

The three main components are the “DPF Model
Editor”, the “DPF Signature Editor”, and the “DPF
Code Generator”. The first two of these components
implement the modelling functionality of the tool. The
“DPF Model Editor” is the component that allows
creation and modification of DPF specifications. It uses
“DPF Core” and “DPF Diagram” and also implements
the view part of the GEF’s MVC architecture. Special
arrow-routing and display functions have been developed
for showing DPF’s special kinds of predicates. The
“DPF Signature Editor” extends the functionality of
the “DPF Model Editor” by providing an editor for
building user-defined, reusable predicate signatures [21].
It mainly relies on the functionality provided by the
“DPF Model Editor” component but it also uses some
of the functionalities provided by the “DPF Core”. The
third component, “DPF Code Generator”, builds on top
of the “DPF Core” and “DPF Xpand metamodel” and
makes code generation facilities available for users via a
wizard.

4. A METAMODELLING EXAMPLE

This section illustrates the steps of designing a meta-
modelling hierarchy using the DPF Workbench. The
example demonstrates specification of a metamodelling
hierarchy for business process modelling. First we
show the specification of a metamodel using the DPF
Workbench. We also show the generation of DSML
editors by loading an existing metamodel to the tool.

Furthermore we present how typing and constraint
validation are performed by the tool.

The DPF Workbench runs inside Eclipse, and to get
started, we activate the editor by selecting a project folder
and invoking an Eclipse-type wizard for creating a new
DPF Specification Diagram. The tool will be pre-loaded
with a set of predicates corresponding to the signature
shown in Table 1. The details of how signatures are
created are given in [21].

We start the metamodelling process by configuring
the tool with the DPF Workbench’s default metamodel
S4, consisting of Node and Arrow, which serves as a
starting point for metamodelling in the DPF Workbench.
This default metamodel is used as the type graph for
the metamodel S3 at the highest level of abstraction
of the business process metamodelling hierarchy. In
S3, we introduce the domain concepts Elements and
Control, that are typed by Node (see Fig. 6). We also
introduce Flow, NextControl, ControlIn, and ControlOut,
which are typed by Arrow. The typing of this metamodel
to the default metamodel is guaranteed by the fact that
the tool allows only creation of specifications in which
each specification element is typed by Node or Arrow.
One requirement for process modelling is that “each
control should have at least one incoming arrow from
an element or another control”; this is specified by
adding the [jointly-surjective 2] constraint on the
arrows ControlIn and NextControl. Another requirement
is that “each control should be followed by either another
control or by an element, not both”; this is specified
by the [xor] constraint on the arrows ControlOut and
NextControl. We save this specification in a file called
process m3.dpf, with “m3” reflecting the level to
which it belongs.

Fig. 6. DPF Workbench configured with the default metamodel consisting of Node and Arrow, and the signature Σ from Table 1,
indicated with a bold black rectangle; showing also the specification S3 under construction. Note that the bold black arrow
ControlOut is selected, therefore the predicates that have arrow as their arity are enabled in the signature bar.
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[mult] [inj] [surj]

Fig. 7. DPF Workbench configured with the specification S3 from Fig. 6 as metamodel, and the signature Σ from Table 1 indicated
with a bold rectangle; also the specification S2 under construction is shown.

Now we will illustrate how an editor can be
generated from the existing specification S3. This
is achieved by invoking the wizard for creating a
new DPF Specification Diagram once more. This
time, in addition to specifying that our file shall be
called process m2.dpf, we also specify that the file
process m3.dpf shall be used as the metamodel for our
new specification S2. We still use the same signature
from Table 1 with this new editor. Note that the tool
palette in Fig. 7 contains buttons for each specification
element defined in Fig. 6. In process m2.dpf we will
define a specification S2, which is compliant with the
following requirements:
1. Each activity may send messages to one or more

activities.
2. Each activity may be sequenced to another activity.
3. Each activity may be connected to at most one choice.
4. Each choice must be connected to at least two

conditions.
5. Each activity may be connected either to a choice or

to another activity, but not to both.
6. Each choice must have exactly one activity con-

nected to it.
7. Each condition must be connected to exactly one

activity.
8. Each activity must have a maximum of one condition

connected to it.
9. An activity cannot send messages to itself.

10. An activity cannot be sequenced to itself.
We now explain how some of the requirements

above are specified in S2. Requirements 1 and 2
are specified by introducing Activity that is typed by
Element, as well as Message and Sequence that are typed
by Flow. Requirement 5 is specified by adding the
constraint [nand] on the arrows Sequence and Choice.
Requirement 6 is specified by adding the constraints
[injective] and [surjective] on ChoiceIn. Require-
ments 9 and 10 are specified by adding the constraint
[irreflexive] on Message and Sequence, respectively.

The conformance relation between S2 and S3 is
checked in two steps. Firstly, S2 specification is
correctly typed over its metamodel by construction.
The DPF Workbench actually checks that there exists
a graph homomorphism from the specification to its
metamodel while creating a specification. For instance,
when we create the ChoiceIn arrow of type ControlIn, the
tool ensures that the source and target of ChoiceIn are
typed by Element and Control, respectively. Secondly,
the constraints are checked by corresponding validators
during the creation of specifications. In Fig. 7 we see
that all constraints specified in S3 are satisfied by S2.
However, Fig. 8 shows a specification that violates some
of the constraints of S3, e.g. the [xor] constraint on
the arrows ControlOut and NextControl in S3 is violated
by the arrow WrongArrow in S2. The constraint is
violated since Condition – that is typed by Control – is
followed by both a Choice and an Activity, violating the
requirement “each control should be followed by either
another control or by an element, not by both”. This
violation will be indicated in the tool by a message (or
a tip) in the status bar.

Fig. 8. A specification violating [xor] constraint on the arrows
ControlOut and NextControl in S3.
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Fig. 9. A sample business process model S1 for purchasing, specified by the DPF Workbench configured with the specification
S2 as metamodel.

We can now repeat the previous step and load
the editor with the specification S2 as metamodel, by
choosing process m2.dpf as a metamodel. This editor
is then used to specify other specifications located at the
metalevel M1. One such specification S1 is shown in
Fig. 9. Note that the tool palette in Fig. 9 contains buttons
for each specification element defined in Fig. 7. For this
tool palette (not shown in Fig. 9) we have chosen a
concrete syntax for process modelling with special visual
effects for model elements. For instance, model elements
typed by Condition and Choice are visualized as diamonds
and circles, respectively.

Finally, we may use predicates from the signature to
add constraints to S1, and, we may use it as a metamodel
for another modelling level. This pattern could be
repeated as deep as it is necessary for the metamodelling
hierarchy, however, in this particular example we stop at
this level, and will eventually generate code from S1 as
illustrated in the next section.

5. CODE GENERATION

We will now illustrate the newly added code generation
facility of the DPF Workbench. Code generation is
the process of automatically creating programming
code from software models. The models specify the
software at a high level of abstraction – independent
of the implementation details, whereas the code
generator creates the executable source code from the
models. Code generation is a common practice in
today’s software development and has become a built-
in functionality in modern IDEs. Large middleware
platforms, such as Java EE and Spring with their
extensive need for configuration files, have shown the
advantages of code generation. These configuration files,
often written in XML, are tedious and time consuming
to maintain. The focus in this paper will not be on
generating specific configuration files for an arbitrary
framework, instead, it will be on a general solution for
creating code from domain-specific models.

In language workbenches, code generation is the
usual way to construct tool support for DSMLs. In
MDE, code generation is viewed as a special form of
model transformations, more specifically model-to-text
transformations [23]. Hence the actual code generation
is performed by executing a sequence of transformation
rules resulting in the executable software code. A
transformation rule could be an expression in a template,
or defined in a general purpose programming language.
In template-based code generation, templates are used to
define how model elements are transformed to source
code based on their types. The metamodel specifies
the types of the DSML and the template describes how
instances of these types should be transformed to code.
Xpand is a popular code generation template language
used with Eclipse. Xpand supports code generation from
e.g. EMF or XSD models. In this paper, we adapt
Xpand so that it can be used for code generation from
DPF models at any meta-level in the DPF hierarchy.
A corresponding Xpand template is created for each
DSML, which can be used to transform models created
by the DSML to source code. Note that since EMF
only allows modelling hierarchies with two meta-levels,
Xpand is usually bound to code generation for these two
levels.

Now we illustrate the code generation facility of
the DPF Workbench by creating a template for the
metamodelling hierarchy defined in the previous section.
For more details of the template-based code generation
facility in the DPF Workbench see [34].

To generate code, a template has to be created that
uses a DPF specification as metamodel. A default, ready-
to-use template can be created by the new wizard “DPF
Generator Project”. Listing 1 shows an excerpt of a
template that generates Java code for models conforming
to the specification in Fig. 7. The template uses the
usual Xpand syntax. The Xpand generator framework
is extended to deal with DPF specifications at any meta-
level. The template language support standard control
structures like FOREACH loops and supports also sub-
templates that are defined by DEFINE statements and
called by EXPAND statements.



www.manaraa.com

Y. Lamo et al.: DPF Workbench: a multi-level language workbench for MDE 11

Fig. 10. Code generation overview.

To run code generation on a certain model, the model
must be linked to the template and the metamodel. The
template engine can then iterate over the model elements
and create code following the template (see Fig. 10).
Since we support Xpand’s workflow approach this can
be done by editing a workflow file that is also generated
by the DPF generator project wizard. After inserting the
path to the model, the file can be executed by “Run As→

MWE Workflow”. Furthermore, the workflow file can be
augmented with post-processors, such as pretty printers,
to automatically format the generated code. The Java
classes in Listings 2 and 3 are example classes generated
by the template engine from the model in Fig. 9 as input.
Because of space limitations in the paper, we kept the
template file simple intentionally.
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6. RELATED WORK

There is an abundance of visual modelling tools avail-
able, both as open-source software and as commercial
products. Some of these tools also possess metamodel-
ling features, letting the user specify a metamodel and
then use this metamodel to create a new editor. We will
now give a short description of some of the most popular
metamodelling tools and shortly discuss how they treat
multi-level metamodelling. We will also mention how
constraints are represented in the metamodelling process.

The Visual Modeling and Transformation System
(VMTS) is an n-layer metamodelling environment
that supports editing models according to their meta-
models [22]. The VMTS allows for an arbitrary
number of (meta)modelling layers, but has no sup-
port for a completely graph-based constraint specifica-
tion language, as it uses OCL for the specification of
constraints. It runs on the Microsoft .NET framework.

A Tool for Multi-formalism and Meta-Modelling
(AToM3) is a tool for multi-paradigm modelling [2,8].
The two main tasks of AToM3 are metamodelling
and model transformation. Formalisms and models
are described as graphs. From the metamodel of a
formalism, AToM3 can generate a tool that lets the
user create and edit models described in the specified
formalism. Some of the metamodels currently available
are: Entity-Relationship, GPSS, Deterministic and
Non-Deterministic Finite State Automata, Data Flow
Diagrams, etc. AToM3 is freely available. The tool does
not allow for an arbitrary number of (meta)modelling
layers, nor is there support for a completely graph-
based constraint specification language. The tool is
implemented in Python and runs on most platforms.

The Generic Modeling Environment (GME) [14]
is a configurable toolkit for creating domain-specific
modelling and program synthesis environments. The
configuration is accomplished through metamodels
specifying the modelling paradigm (modelling language)
of the application domain. The GME metamodelling
language is based on the UML class diagram notation
and OCL constraints. Metamodels specifying the
modelling paradigm are edited in the tool’s editor and
saved to file. New editors can then be instantiated, based
on the newly generated metamodels. In order to simplify
the editing process, both models and metamodels are
edited in the same environment. Model visualization is

customizable through built-in decorator interfaces. All
GME modelling languages provide type inheritance, and
GME supports various concepts for modelling, including
hierarchy, multiple aspects, sets, references, and explicit
constraints. The tool does not allow for an arbitrary
number of (meta)modelling layers, nor is there support
for a completely graph-based constraint specification
language. The GME’s architecture is based on Microsoft
Component Object Model (COM), making it extensible
by any language that supports COM. The drawback
of this approach is that it only runs on the Microsoft
Windows platform.

MetaEdit [37] is a commercial tool offering
(meta)modelling and code generation functionality. The
tool clearly separates (meta)models from their dia-
grammatic visualization; it also offers functionality for
code generation. The potential to customize the visual
presentation of the modelling elements is better than
in the other compared tools. MetaEdit uses a two-
layer modelling hierarchy. The main limitation of the
tool is the treatment of constraints: it only supports
a set of predefined constraints over binary relations.
There is no way that the user can define new domain-
specific constraints. MetaEdit is a stand-alone pro-
prietary application that runs on the Windows, Linux,
and Mac platforms, it also provides plug-ins both for
Eclipse and Visual Studio.

The metaDepth [7] framework is a framework for
multi-level metamodelling. The system permits build-
ing systems with an arbitrary number of metalevels
through deep metamodelling. The framework allows
the specification and evaluation of derived attributes
and constraints across multiple metalevels, linguistic
extensions of ontological instance models, transactions,
and hosting different constraint and action languages. At
present, the framework supports only textual specifica-
tions; it does not yet support diagrammatic syntax. How-
ever, there is some work in progress on integrating
DPF with metaDepth that aims to give a graph-based
formalization of metaDepth and deep metamodelling in
general.

Table 2 summarizes comparison of some popular
metamodelling tools with the DPF Workbench. Note
that the DPF Workbench is the only tool that supports
fully diagrammatic metamodelling. The table also shows
that only a few tools support multi-level modelling,
especially combined with platform independence.
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Table 2. Comparison of the DPF Workbench to other metamodelling tools. EVL stands for Epsilon Validation Language, and the
current predefined validator in the DPF is implemented in Java

Tool Layers Code Generation Constraint Language Platform Visual UI

EMF/GMF 2 X OCL, EVL, Java Java VM X
VMTS ∞ X OCL Windows X
AToM3 2 X OCL, Python Python, Tk/tcl X
GME 2 X OCL Windows X
MetaEdit+ 2 X Predefined Java VM X
metaDepth ∞ X EVL Java VM
DPF Workbench ∞ X Validators Java VM X

7. CONCLUSION AND FUTURE WORK

This paper extends [20] with code generation facilities
for the DPF Workbench, whereas in [21] the DPF
editor was extended with functionality to define signature
editors. The DPF Workbench is an open-source project
and can be downloaded from dpf.hib.no. It is developed
in Java and runs as a plug-in on the Eclipse platform. It
supports fully diagrammatic metamodelling as proposed
by the DPF and it has also a built-in code generation
facility that is based on Xpand templates. The templates
define what to generate from model elements based
on their types in the metamodel, and the template
engine takes a model conforming to the metamodel
as input and generates code out of it following the
instructions in the template. The functionality of the
tool has been illustrated by specifying a metamodelling
hierarchy for business process modelling and generating
Java code for it. We outline how the editor’s tool
palette can be configured for a given domain by using
a specific metamodel. To ensure correct typing of
the edited models the tool uses graph homomorphism.
Moreover, it implements a validation mechanism that
checks instances against all the constraints that are
specified by the metamodel. We also showed how
models created in the tool can be used as metamodels.
The authors are not aware of other EMF-based tools
that facilitate multi-level metamodelling, especially with
code generation support for models at any level of
the hierarchy. This functionality could be used for
testing design choices early in the development phase by
generating prototypes.

The tool was used in a graduate course in MDE at
Bergen University College in Spring 2012. The students
participated in a field experiment designed for testing the
DPF Workbench. This experiment gave positive user
feedback from participants external to the development
project. The modelling part was quickly learned by the
students, they commented that it was easy to learn since
the tool basically has only two primitives, node and edge.
The students needed more training to get used to the DPF
constraints, and proposed directions to improve the tool,
especially concerning the visual syntax.

The DPF Workbench was recently used in an
industrial case study in model-driven development of
web services [19]. The study shows that it is possible
to use the tool for modelling web services and to use the
code generator to deploy the web services.

Many directions for further work still remain un-
explored, others are currently in the initial development
phases. We shall only mention the most prominent here:
• Configurable concrete syntax. As the system exists

today, all diagram (nodes, arrows, and constraints)
visualizations are hardcoded in the editor code. A
desirable extension would be to make visualization
models more decoupled from the rest of the Display
Model than is the current situation. This would involve
a configurable and perhaps directly editable concrete
syntax [3].

• Layout and routing. Automated layout seems to
become an issue when dealing with medium-sized to
large diagrams. There seems to be a great usability
gain to be capitalized on in this matter. Today’s editor
contains a simple routing algorithm, based on the
GEF’s ShortestPathConnectionRouter class. The
problem of finding routing algorithms that produce
easy-to-read output is a focus of continuous research
[27], and this problem applied to the DPF Work-
bench can probably be turned into a separate
research task.

• (Meta)model evolution. Metamodels of DSMLs
evolve during their life cycles; it is important that
models and other artefacts are changed corres-
pondingly. Some preliminary work has been done in
this direction in [36]; in our future work we will build
on this work and provide an implementation for the
DPF Workbench.

•Model versioning. Usually development environments
are rather spread and models are developed con-
currently by different groups from models different
locations. Tool support for calculating model
differences and merging the changes will increase the
usability of the DPF Workbench. The theoretical work
is already established in [29], and an implementation
of this is planned in the future.
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• Behavioural modelling. Traditionally MDE has
focused on structural modelling, but it is an emerging
trend to also use MDE techniques to develop
behavioural models. We have already extended the
formal foundation of the DPF to support behavioural
modelling in [31] and the DPF Workbench has been
used to create a DSML for specifying health care
workflows. Currently the code generation facility
described in this paper is used to generate DiVinE [4]
code from these behavioural models, which will then
be used to check properties against the models.

In addition to these areas, development to utilize the
core functionality of the DPF Workbench as a base for
model transformation and (meta)model evolution is on
the horizon, reflecting the theoretical foundations that are
being laid down within the DPF research community.
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DPF-tööriistakast: mitmetasandilised keeleprotsessorid mudel-orienteeritud
projekteerimiseks

Yngve Lamo, Xiaoliang Wang, Florian Mantz, Øyvind Bech, Anders Sandven ja Adrian Rutle

On tutvustatud DPF-tööriistakasti ja (meta)modelleerimiseks ning koodi genereerimiseks sobivaid keeleprotsesso-
reid. DPF-tööriistakasti kuulub graafiline spetsifikatsioonide redaktor DPF (Diagram Predicate Framework), mis
võimaldab (meta)mudeleid ja nende teisendusi graafiliselt formaliseerida. Redaktori funktsionaalsus võimaldab
probleem-orienteeritud keelte täielikku spetsifitseerimist diagrammide abil. Lisaks toetab DPF-tööriistakast meta-
mudelite hierarhiate kirjeldamist suvaliste hierarhiatasandite jaoks, st iga metatasandi mudelit saab allpool asetseval
tasandil metamudelina kasutada. DPF-tööriistakast hõlbustab valdkonnaspetsiifiliste skeemiredaktorite genereerimist
metamudelitest. Naabertasandite metamudelite konformsus tagatakse tüübimorfismide abil ja teatud diagrammatiliste
kitsenduste valideerimise teel. Lisaks on DPF-tööriistakastis signatuuride redaktor tarkvarakitsenduste ja vastavate
validaatorite defineerimiseks. Koodigeneraator on hiljuti lisandunud komponent, mis võimaldab mudelitest tark-
vara genereerida. DPF-tööriistakasti võimalusi on artiklis näidatud praktilise näite varal, esitades äriprotsesside
metamudelite hierarhia ja visandades protsessi, kuidas saaks neid mudeleid koodigeneraatori abil programmideks
teisendada.
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